@IDUG

A Row’s Life

Marcus Davage

BMC Software Ltd.

W #IDUGDb2 Platform: Db2 for z/0OS

Originally produced and presented by Linda Ball (retired BMC Software) and
subsequently modified by Ken McDonald, Jim Dee, Frank Rhodes and myself.

There are different ways to find them and different
surroundings. And most DBAs find they need to
understand these transformations thoroughly to manage
performance and recovery and even security.

In this presentation, we take a lighthearted view of one
row’s life to emphasize some of the internals of DB2 on
the z/0OS platform.

Meet Rowdy

* We'll follow Rowdy, a row in a wordsmith’s new data base as he
» goes from raw data to row, gets inserted and indexed,

* gets logged,

* gets neighbours,

» gets updated and accessed and makes some moves, and

» gets affected by table version changes.

\'\89.

» We will see the definitions for Rowdy’s table and other objects,
his internal format and how they affect performance.

* And finally, the end will come...Rowdy gets deleted.
* We will discuss briefly how his life could have been different.

Rowdy’s Table is Designed

Rowdy’s DBA
* Wants the word to be a primary key.

* Might like to have a random word select and thmks an identity
column might be a good idea.

* Needs multiple meanings and a quote.

* Needs notes about the origin of a word

» Will insert words, sometimes with minimal info.

* Will want to access multiple rows by letter of the alphabet.

Rowdy’s Tablespace is Defined

CREATE DATABASE DBAWORDS;
CREATE TABLESPACE UTSPBG IN DBAWORDS
USING STOGROUP SYSDEFLT PRIQTY -1 SECQTY -1
FREEPAGE 1 PCTFREE O MAXPARTITIONS 1 SEGSIZE 4;
CREATE TABLESPACE UTSPBR IN DBAWORDS
USING STOGROUP SYSDEFLT PRIQTY -1 SECQTY -1
FREEPAGE 1 PCTFREE O NUMPARTS 1 SEGSIZE 4;
SET CURRENT APPLICATION COMPATIBILITY ='V12R1M500
CREATE TABLESPACE OLDPART IN DBAWORDS
USING STOGROUP SYSDEFLT PRIQTY -1 SECQTY -1
FREEPAGE 1 PCTFREE O NUMPARTS 1 SEGSIZE O ;
CREATE TABLESPACE OLDSEG IN DBAWORDS
USING STOGROUP SYSDEFLT PRIQTY -1 SECQTY -1
FREEPAGE 1 PCTFREE O SEGSIZE 4;

First of all, we create the database, then we create the table space to house
the table and its data.

Db2 12’s default table space type is a Universal Table Space (or UTS), it’s
segmented, and can be partitioned by growth, or partitioned by range.

You can still create old fashioned, non UTS tablespaces, segmented or
partitioned, if you really, really want to, but you must issue the SET CURRENT
APPLICATION COMPATIBILITY statement first.

This presentation will use a UTS PBG tablespace.

What’s in a page?

* Page sets
* File page sets, containing data entries
* Index page sets, containing index entries

* Page sizes
» 4KB, 8KB, 16KB, 32KB

* Page set Types
* Partitioned, Non-partitioned
* Segmented, Non-segmented
* Compressed, Uncompressed
* Universal Table Space

* Segmented and Partitioned
* Partitioned by Range / Growth

Db2 stores data in page sets.

e |f the page set contains data records, it is called a file
page set. A file page set is the physical (internal)
representation of a table space. A file page set that
contains LOB data is called a LOB page set.

e If it contains index entries, it is called an index page
set. An index page set is the physical representation of
an index space (index).

A page set is a collection of one or more data sets that
are logically concatenated to form a linear addressing
range.

Db2 data sets are defined as VSAM linear data sets
(LDSs).

Each segments contains the same number of pages
(in multiples of 4, from 4 to 64), are chained
together, and provide performance and locking
benefits.

The data sets in a page set contain pages that can be 4
KB, 8 KB, 16 KB, or 32 KB in size.

What’s in a page?

* Data Page Types
* Header pages
* Space map pages
* Data pages
» System pages

* Index Page Types
* Header pages
* Space map pages
* Non-leaf pages
* Directory pages
* Root pages
* Leaf pages

A page set for a table space that has undergone ALTERs
that resulted in changes to data type definitions also has
system pages.

In a segmented table space, system pages are in
dedicated system segments, with their own space map

pages.

LOB and XML page sets have other types of pages, which
we shan’t go into in this presentation.

What's in a page?

Page Header

Header page

Page Trailer

Header pages

Header pages of page sets have a 1-byte page trailer for
6-byte RBA and LRSN formats, and a 20-byte page trailer
for 10-byte RBA and LRSN formats. The page header
fields contain control information that Db2 uses.

What's in a page?

Page Header
(28 bytes)

Space map

of Segment Entries

(Each entry has 7 bytes of control information
and 4 bits per page in segment)

Page Trailer

Modified Page Indicators (20 bytes)
(1 bit per page)

Space map pages

A space map page identifies the data pages that have
enough free space for more data to be inserted.

Each space map in a page set covers a specific range of
pages. The size of the range is computed based on the
type of page set (segmented file, non-segmented file,
partitioned file, LOB, or index), the page size, and
whether the page set has the MEMBER CLUSTER
attribute.

There are six corresponding space map page formats:
segmented, non-segmented, partitioned, LOB high-level,
LOB low level, and index.

Non-segmented and partitioned file page set space map

pages are almost identical.

What's in a page?

Page Header
(20 bytes)

Header

Records

Contiguous Free Space

Page

ID1
Trailer

File page set data pages

The file page set data page includes several parts.
Contents of a data page

The data page includes the following basic parts:
1. Data Page Header

2. Record

e Records (defined either by the user or by Db2, which

can be part of the user's data or part of the Db2 catalog
or directory)

e Overflow records and pointer records

e Large and small holes

3. Contiguous free space
4. ID map and page trailer.
Data page header

Every file page set data page has a 20-byte page header,
and appendage if an appendage is present, that contains
control information that Db2 uses.

Records
Records are stored following the data page header.

Records that are stored in pages represent the rows of a
table in a table space. The first 6 bytes of all records
contain control information.

This portion of the record is called the record header or
prefix. The header is followed by user data.

Rowdy’s Table is Defined

CREATE TABLE DBA.WORDS

(WORD CHAR(30) NOT NULL PRIMARY KEY
,SP_TYPE CHAR(3)

,MEANING VARCHAR (100)

,MEANING2 VARCHAR (100)

,MEANING3 VARCHAR (100)

, CODENUM SMALLINT

GENERATED BY DEFAULT AS IDENTITY (CACHE 50,CYCLE)
,QUOTE_DATE DATE
,QUOTE VARCHAR (500)
,ORIGIN_NOTES VARCHAR(250)) IN DBAWORDS.OLDSEG;

CREATE UNIQUE INDEX DBA.WORDINDX ON DBA.WORDS (WORD)
USING STOGROUP SYSDEFLT PRIQTY -1 SECQTY -1 CLUSTER;

CREATE INDEX DBA.CODEINDX ON DBA.WORDS (CODENUM)
USING STOGROUP SYSDEFLT PRIQTY -1 SECQTY -1;

10

Rowdy Climbs into the Data Base

INSERT INTO DBA.WORDS
(WORD, SP_TYPE, MEANING,
MEANING2, MEANING3, QUOTE_DATE, QUOTE,
ORIGIN_NOTES)

VALUES
("rowdy', 'N', 'A rough and disorderly person’,
NULL, NULL, NULL, NULL,
‘origin unknown');

For this example, ‘rowdy’ is the first row inserted into this empty table. As
such, he will be the first row on page 6 (after header page 0 and spacemap

page 1).

11

Rowdy Climbs into the Data Base

The Header Page
PARTITION: # 0001
PAGE: # 00000000
HEADER PAGE: PGCOMB='00'X PGBIGRBA='0000000032F96FD671BE'X PGNUM='00000000'X PGFLAGS="38"'X
HPGOBID="'98550002'X HPGHPREF='000000B4'X HPGCATRL='00'X HPGREL='Q' HPGZLD='."
HPGCATV="00"'X HPGTORBA="'000000000000'X HPGTSTMP="20220929123612320650'X
HPGSSNM="DEJM' HPGFOID='0001'X HPGPGSZ="'1000'X HPGSGSZ='0004'X HPGPARTN='0001"X

HPGBIGMASSDELETETIMESTAMP="000 ‘X FOEND="42"'X

For this example, ‘rowdy’ is the first row inserted into this empty table. As
such, he will be the first row on page 6 (after header page 0 and spacemap

page 1).

12

Rowdy Climbs into the Data Base

The Segmented Spacemap Page

PAGE: # 00000001

SEGMENTED SPACEMAP PAGE: PGCOMB="'00'X PGBIGRBA='0000000032F96FD4B000 "X PGNUM='00000001"'X
PGFLAGS="30'X SEGNUM='@1AA'X SEGFREE='Q1A8'X SEGENT='0003'X
SEGSIZE='0004'X SEGLENT='00000005'X SEGBFMEM='00'X FOEND='42'X

FIRST PART OF SEGMENTED SPACE MAP:

SEG 0001 000000000001E0 FOOO

SEG 0002 000000000009C0 3000

20 40 60 80 A0 co EQ

For this example, ‘rowdy’ is the first row inserted into this empty table. As
such, he will be the first row on page 6 (after header page 0 and spacemap

page 1).

13

Rowdy Climbs into the Data Base

The System Page

PAGE: # 00000002

SYSTEM PAGE: PGCOMB="10'X PGBIGRBA='0000000032F96FD427B6'X PGNUM='00000002'X PGFLAGS='28'X
PGFREE=3376 PGFREE='0D30'X PGFREEP=698 PGFREEP="02BA'X PGHOLE1="0000"'X
PGMAXID="01"'X PGNANCH=1

SPOH: SPOPREV='00000000'X SPOBKT='01'X SPOFLAGS='00"'X

PGBIGTAIL: PGPRETAIL=' 32F96FD427B6'X PGIDFREE="'00'X PGEND="52"'X
ID-MAP FOLLOWS:

For this example, ‘rowdy’ is the first row inserted into this empty table. As
such, he will be the first row on page 6 (after header page 0 and spacemap

page 1).

14

Rowdy Climbs into the Data Base

The Index Page

* k¥

0000
0020
0040
0060

BEGINNING OF PAGE NUMBER 00000003 ***

10000000 00000000 ©0PB37C 00RO
Q0000 1E 0000002 01060001 00010000
A684A840 40404040 40404040 40404040
06010000 0000VVVO V0LV 00O

00000000 00VA40C8 0VO10F88 00620000
00000000 000VVVVO 0VO10001 08809996
40404040 40404040 40404040 40000000
00000000 00000000 0DOVVRD 000000

LINES ARE ALL ZERO.
00000000 000D 0VRRVO3E 00O

OFEQ

00000000 0000VVPO 32FI96EFS 900Q0052

N

Rowdy’s data in this index (on WORD) includes his WORD
value (rowdy or X’9996A684A8’ followed by blanks) and
the value used to locate his page and hence his row data:
X’00000601’, or Page 6, Row 1.

This is the WORDINDX index entry.

Index pages identify the rows by representing them in two-byte entries
beginning (for row 1, Rowdy’s ID) 20 bytes from the end of page (it used to be
two).

<click>

The index entry for Rowdy is at x’3E’.
<click>

Which is located here.

Rowdy’s data in this index (on WORD) includes his WORD value (rowdy or
X'9996A684A8’ followed by blanks) and the value used to locate his page and
hence his row data: X’00000601’, or Page 6, Row 1.

15

Rowdy Climbs into the Data Base

The Data Page

¥ BEGINNING OF PAGE NUMBER 00000006 *
0000 10000000 000D 0VVRV6EVO OFEDRR7D 000101 02006900)96 A684A840
0020 40404040 40404040 40404040 40404040 40404040 40404040 0,4&?091F Foo
0040 00000000 33005100 52005300 5400C140 9996A487 88408195 84408485\%2969984
0060 859993A8 40978599 A29695FF FFFF@@96 99898789 9540A495 929596A6 95000000
. LINES ARE ALL ZERO.
7§ 00000000 000VVVVO 00VVVO14 D0OOPOPO 00VVVRO 00RO 32FS6EFS 8DA70052

Data pages identify the rows by representing them in two-byte entries
beginning (for row 1, Rowdy’s ID) 20 bytes from the end of page (it used to be
two).

The offset where the data is located is in this entry.

The first xX'14’ bytes of all tablespace pages is the page header.

The last byte of the page is the parity byte.

We’'ll talk about the map entry at the end of the page in a bit more depth later.
<click>

But, ‘rowdy’ being ROWID 1 is at offset *14’

The entire row is highlighted here... but, we’ll actually look at row layout a little
bit more towards the end of the presentation.

16

Rowdy Climbs into the Data Base

The Data Page (formatted)

DATA PAGE: PGCOMB='10'X PGBIGRBA-='0000000032F96FD4B11E'X PGNUM='00000006'X PGFLAGS='00'X
PGFREE=3949 PGFREE='@F6D'X PGFREEP=125 PGFREEP='©07D'X PGHOLE1='0000'X
PGMAXID='@1'X PGNANCH=1

PGBIGTAIL: PGPRETAIL=' 00 00000 ©032F96FD4B11E'X PGIDFREE='00'X PGEND='52"'X

ID-MAP ROLLOWS:
o1\ eelsd

RECORD: X ET="'0014'X PGSFLAGS='02'X PGSLTH=105 PGSLTH='©069'X PGSOBD='0000'X PGSBID='01'X

9996A684 AB404040 40404040 40404040 40404040 40404040 40404040 404000D5 rowdy .N
40408001 FFOO0000 00003300 51005200 53005400 C1409996 A4878840 81958440 ccveeeennn A rough and
8489A296 99848599 93A84097 8599A296 9S5FFFFFF 00969989 87899540 A4959295 disorderly person....origin unkn
96A695 own

Here is the formatted version of the page. As you can see, the offset is x’14’.
<click>

The log RBA of the inserted row is here.

<click>

17

Rowdy Appears on the Log

0000000032F96FD4B11E TYPE(UNDO REDO) URID(0000000032F96FD4ASBE)
LRSN(00DC2E49908B61048600) DBID(9855) OBID(0002) PART(0001) PAGE(00000006)
xuswne(mssm IN A DATA PAGE) CLR(NO) PROCNAME(DSNISGRT)

000\ \ 00794001 00090011 00000100 000V 0VRRES00 00019996 A684A840 40404040
0020\ \40404040 40404040 40404040 40404040 40404040 00D54040 8001FFOQ 00000
0040 33005100 52005300 5400C140 9996A487 88408195 84408489 A2969984 859993A8
0060 40978599 A29695FF FFFFOO96 99898789 9540A495 929596A6 95

rowdy
N
A rough and disorderly
person origin unknown

* % ® *

This is the INSERT log record for the tablespace data page. There are also
log records associated with the index updates as well.

There have been previous NA and EU IDUG presentations on deciphering the
log.

DSN1LOGP - It could save your job one day — covers syntax and examples of
using DSN1LOGP to find logged information.

BITs and Pieces of the DB2 Log — A geek level presentation using the
DSNMACS(DSNDQJO00) macro to map various log records and their content.

1. This is the RBA of the INSERT. This (or the LRSN in data sharing) is also
the PGLOGRBA of the page being updated. The PGLOGRBA reflects the last
activity (INSERT, UPDATE, DELETE, PAGE COMPACTION, etc.) against the

page.

The PGLOGRBA is used by copy and recovery utilities as well as the various
log tools.

18

This is the row header... 6 bytes which contain a byte of flags, a halfword
length, the halfword OBID, and the last byte is usually the ROWID. The
ROWID can be used to find the corresponding PGMAP entry at the bottom of
the page to locate the offset into the page where the row resides.

Now, row VERSIONING introduced in V8.1 could impact this and the last byte
could reflect the VERSION of the row instead of the ROWID. A bit in the flags
(first byte of the row header) indicate what this byte represents.

The first 8 bytes prior to the row header here is the DM Segment Header...
byte 0003 is also (and so far always) the ROWID. This is used by the
recovery and log tools to find the PGMAP entry.

18

©32F96FDOBDB3
032F96FD15B07
032F96FD16559
032F96FD25358
032F96FD262F2
032F96FD2A68C
032F96FD2B626
032F96FD2ECOA
032F96FD2FBA4
032F96FD3361A
032F96FD345B4
032F96FD3AF63
032F96FD3B520

032F96FD3EE13
032F96FD3F067
032F96FD400FC

How did Rowdy get there?

TYPE(REDO)
TYPE(REDO)
TYPE(REDO)
TYPE(REDO)
TYPE(REDO)
TYPE(REDO)
TYPE (REDO)
TYPE (REDO)
TYPE(REDO)
TYPE(REDO)
TYPE(REDO)
TYPE (REDO)

TYPE(UNDO REDO) DBID(9855) OBID(0002) PART(0001) PAGE(00000000) SUBTYPE (RE/FORMAT,MODIFY HEADER/SPACEMAP/

DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)
DBID(9855)

0BID(0000)
0BID(0002)
0BID(0002)
0BID(0002)
0BID(0002)
0BID(0004)
0BID(0004)
0BID(0006)
0BID(0006)
0BID(0008)
0BID(0008)
0BID(0002)

SUBTYPE(EXCLUSIVE LOCK)
SUBTYPE(EXCLUSIVE LOCK)
SUBTYPE(EXCLUSIVE LOCK) g
PART(0001) PAGE(00000000) SUBTYPE(RE/FORMAT,MODIFY [EADER/SPA p
PART(0001) PAGE(00000001) SUBTYPE(RE/FORMAT,MODIFY HEADE P/ROOT
PART(0001) PAGE(00000000) SUBTYPE(RE/FORMAT,MODIFY PADE \CEfMAP /ROOT
PART(0001) PAGE(00000001) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACEMAP/ROOT
PART(0001) PAGE(00000000) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACEMAP/ROOT
PART(0001) PAGE(00000001) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACEMAP/ROOT
PAGE(00000000) SUBTYPE (RE/FORMAT ,MODIFY HEADER/SPACEMAP/ROOT PAGE)
PAGE(00000001) SUBTYPE (RE/FORMAT,MODIFY HEADER/SPACEMAP/ROOT PAGE)
SUBTYPE(EXCLUSIVE LOCK)

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

ROOT PAGE)
TYPE(REDO) DBID(9855) OBID(000B) PAGE(00000000) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACEMAP/ROOT PAGE)
TYPE(REDO) DBID(9855) OBID(00@B) PAGE(00000001) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACEMAP/ROOT PAGE)
TYPE(REDO) DBID(9855) OBID(@0@B) PAGE(00000002) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACEMAP/ROOT PAGE)

These are all the records from the log of the operations
performed on the WORDS database and UTSPBG tablespace.

Here, the tablespace, the table and the indexes are being
created, and their pages formatted.

19

How did Rowdy get there?

©32F96FDA50FC TYPE(REDO) DBID(9855) OBID(00@D) PAGE(00000000) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACEMAR
032F96FD45323 TYPE(REDO) DBID(9855) OBID(00@D) PAGE(00000001) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACEWARZRO
032F96FD463B8 TYPE(REDO) DBID(9855) OBID(@00D) PAGE(00000002) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPACZMAP
032F96FDA4647B TYPE(REDO) DBID(9855) OBID(00@D) PAGE(00000003) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPA(EMAP
032F96FDA4654C TYPE(REDO) DBID(9855) OBID(000D) PAGE(00000004) SUBTYPE(RE/FORMAT,MODIFY HEADER/SPAGEMAP/ROOT
032F96FD4A720 TYPE(UNDO) DBID(9855) OBID(00@B) PART(0001) PAGE(00000000) SUBTYPE(NOOP LOG RECORD) \ '\~) -/:
©32F96FDAAC59 TYPE(UNDO REDO) DBID(9855) OBID(0002) PART(@001) PAGE(00000001) SUBTYPE(SEGMENT ALLOCATION/DEALLOCATION)
032F96FDAACE2 TYPE(UNDO REDO) DBID(9855) OBID(0002) PART(0001) PAGE(00000000) SUBTYPE (RE/FORMAT,MODIFY HEADER/SPACEMAP/
ROOT PAGE)

©32F96FDAAEC2 TYPE(UNDO REDO) DBID(9855) OBID(0002) PART(@001) PAGE(00000001) SUBTYPE(UPDATE SPACE MAP)

032F96FDAAF42 TYPE(REDO) DBID(9855) OBID(0002) PART(0001) PAGE(00000001) SUBTYPE(UPDATE SPACE MAP)

032F96FDA4BOAO TYPE(REDO) DBID(9855) OBID(0002) PART(0001) PAGE(@0000001) SUBTYPE(CURRENT LAST ENTRY IN SPACE MAP PAGE)
©32F96FD4BO78 TYPE(REDO) DBID(9855) OBID(0002) PART(0001) PAGE(00000006) SUBTYPE(FORMAT PAGE OR MODIFY SPACE MAP)
032F96FDAB11E TYPE(UNDO REDO) DBID(9855) OBID(0002) PART(@001) PAGE(00000006) SUBTYPE(INSERT IN A DATA PAGE)
032F96FDA4B307 TYPE(UNDO REDO) DBID(9855) OBID(000B) PART(0001) PAGE(00000003) SUBTYPE(TYPE 2 INDEX UPDATE)
©32F96FDAB3E1 TYPE(UNDO) DBID(9855) OBID(00@D) PART(0001) PAGE(00000000) SUBTYPE(NOOP LOG RECORD)

032F96FD4B990 TYPE(UNDO REDO) DBID(9855) OBID(000D) PART(0001) PAGE(00000003) SUBTYPE(TYPE 2 INDEX UPDATE)

Here, the table’s pages are being formatted: the header page,
the space map page, the root page.

The segment is allocated and the space map page is updated.

Finally, page 6 is allocated, the space map page is updated,
the row is inserted and the index updated.

20

rio.y a 1
9996A88193

\
L0 V@ X

9996A58599

Rowdy’s Neighbourhood Gets Crowded

INSERT INTO MVSMID.WORDS
(WORD, SP_TYPE, MEANING, MEANING2, MEANING3, QUOTE_DATE, QUOTE, ORIGIN_NOTES)
VALUES (‘royal','A’, 'Of or pertaining to a king, queen, or other monarch’,

'Superior in size or quality’, NULL, NULL, NULL, NDOG
'Middle English roial from Old French from Latin regalis');
INSERT INTO MVSMID.WORDS
(WORD, SP_TYPE, MEANING, MEANING2, MEANING3, QUOTE_DATE, QUOTE, ORI
VALUES (‘boondoggle’, 'N’,

'Unnecessary, Wasteful, and often counterproductive work’, NULL, NULL, NULL, N
'Coined by R.H. Link, 20th-century American scoutmaster');

S)

boondoggle
82969695849687879385

INSERT INTO MVSMJD.WORDS
(WORD, SP_TYPE, MEANING, MEANING2, MEANING3, QUOTE_DATE, QUOTE, ORIGIN_NOTES)
VALUES ('rover’, 'N’, 'One who roves; wanderer; nomad’,'A pirate vessel',
'Archery. A mark selected by chance’, NULL, NULL, 'Origin unknown');

After many more INSERTS, the page fills up.

21

Rowdy’s Neighborhood Gets Crowded

The Data Page (formatted)

DATA PAGE: PGCOMB='©0'X PGBIGRBA='0000000032FB6164AEF4'X PGNUM='00000006'X PGFLAGS='00'X
PGFREE=188 PGFREE='©@BC'X PGFREEP=3842 PGFREEP='@F@2'X PGHOLE1='0000'X
PGMAXID='17"'X PGNANCH=22

PGBIGTAIL: PGPRETAIL=' 00 00000 ©032FB6164AEF4'X PGIDFREE='00'X PGEND="42"'X

01| 0014 607D 0140 ©1EB ©303 0456 ©51A 0609
QECC B5 ©89A ©926 ©9BC ©A23 ©A9B ©B29S
11 ©BA7 ©CA1 eDee eD73 OEll eESS
RECORD: XOFFSET='0014'X PGSFLAGS='@0'X PGSLTH=105 PGSLTH='©069'X PGSOBD='0000'X PGSBID='01'X
9996A684 AB404040 40404040 40404040 40404040 40404040 40404040 404000D5 rowdy

40408001 FFOO0000 00003300 51005200 53005400 C1409996 A4878840 81958440 @veeennnn A rough and

N

8489A296 99848599 93A84097 8599A296 SS5FFFFFF 00969989 87899540 A4959295 disorderly person....origin unkn

96A695 own

Look at the space map page now! See how it has grown!

The number of rows in the ID-MAP matches the PGMAXID value of x’'17’ or
decimal 23.

22

Rowdy’s Neighborhood Gets Crowded

%* BEGINNING OF PAGE NUMBER 00000006 *
0000 00000000 00000000 00000600 OOBCOFO02
0020 40404040 40404040 40404040 40404040
0040 00000000 33005100 52005300 5400C140

0060 859993A8-40978699 A29695FF FFFF0096
0080 00000 0404040 40404040
royal 00A0 4000C12D 00000000 00330067

99289 < 00G0—A3 95 89958740 A3964081 40928995
96813 00E0 85994094 96958199 838800E2 A4978599
0100 A4819389 A3ASBFFFF 00D48984 84938540

ONDOGG 0120 969440D6 938440G6
0 0140 0200ABOO0 00038296 96958496 87879385
0160 40404040 00D540%0~8 060

.... LINES ARE ALL ZERO.
OFAO0 00000000 00000000 00000000 00000000
boondoggle

OFCO OE110D73 ODOOOCAl 0C450B 0B290A9B
8399898898 OFEO 04560303 01EB0140 607D 90000000
2665467735

00001716
40404040
99962487
99898789
40404040
00830084
876B4098
89969940
€5958793
969440D3
40404040
33006800

00000000
0A2309BC
00000000

00006900
40404040
88408195
9540A495
40404040
008500D6
A4858595
899540A2
89A28840
81A38995
40404040
6C006D00

00000000
0926089A
00000000

00
00D
84408489
929596A6
40404040
86409699
6B409699
89A98540
99968981
40998587
40404040
6EO0E495

00000000
07B506CC
32FB6164

19996 A684A8

FOO
A2969984
950200C3
40404040
40978599
4096A388
96994098
93408699
819389A2
40404040
95858385

00000ES5
0609051A
AEF40042

The PGMAXID is underlined at offset x’12’ in the ‘Header’ portion of the page.
This page contains potentially x’17’ or 23 rows. (There could be holes due to

overflows or deletes.)

This byte is the architectural limit as to why the maximum number of rows on a

single page is 255.
Here’s Rowdy.
Here’s Royal.
Here’s Boondoggle.

The PGMAP is at the bottom of the page. Each halfword entry is the offset to

that ROWID.

23

Rowdy gets a Makeover

UPDATE DBAWORDS

SET
QUOTE_DATE = CURRENT_DATE,
QUOTE = 'There was a rowdy in the IDUG crowd.

WHERE WORD = 'rowdy’;

An update to ‘rowdy’... this will increase his length and move him to a different
location on the page but will not yet cause an overflow.

24

Rowdy finds some Space

This was the end of the page...

OFE@ 000 900 00000000 ©00O0COO 00RO 32FS6EFS 8DA70052

And now...

OF00 A6950200 8DO0OOO1 9996A684 AB404040 40404040 40404040 40404040 40404040
OF20 40404040 404000D5 40408001 00202209 30003300 51005200 53007800 C1409996
OF40 A4878840 81958440 B8489A296 99848599 93A84097 8599A296 95FFFFe@ E3888599
OF60 8540A681 A2408140 9996A684 AB8408995| 40A38885 40C9C4E4 (7408399 96A6844B

OF80 00969989 87899540 A4959295 96A69500 eee
OFA© 00000000 ©0OBCOOO ©PRRLe 000 eee ES5
OFCO OE11eD73 ©DeeeCAl ©C450BA7 ©B290ASB ©A2309BC ©926089A ©7B506CC ©609051A

OFE® 04560303 ©1EBO140 ©07DOF62 32FB6FE@ 547A0052

Note that ROWID 01’s location changed from 0014 to OEF3. Even more
interesting that the page was squeezed to consolidate free space to allow for
this row to fit into its ‘home’ page. Note that ROWID 02 is now at location
0014. This indicates that there is no implied order to the ROWSs on a given
page... row 1 does not have to be the first row... the PGMAP allows us to find
the correct offset for the corresponding rows.

PAGE COMPACTION log records were introduced via into Versions 7 and 8 of
DB2 via APAR PK19182. These records reflect the fact that a squeeze
occurred.

Rowdy finds some Space

Take a look at the top of the page...

*** BEGINNING OF PAGE NUMBER ©0000006 ***
0000 10000000 000D 0ORLOEOE ©O98OF8F
0020 40404040 40404040 40404040 40404040
0040 0000PPO 33005100 52005300 5400C140
0060 859993A8 40978599 A29695FF FFFFOe96

Rowdy’s still there!
*

(But inaccessible) *

*

00141701 80006900 0019996 A684A840
40404040 40404040 ©0D54040 8001FF00
9996A487 88408195 84408489 A2969984
99898789 9540A495 929596A6 950000C3

N *

............. A rough and disord*
erly person....origin unknown..C

Rowdy’s original row data is still in its original position in the page — offset
x’14’, but as the row pointer has changed to xX’0F02’, this old data is

inaccessible.

26

New Columns for Rowdy’s Table

ALTER TABLE DBAWORDS ADD QUOTE_SOURCE VARCHAR(100);
ALTER TABLE DBAWORDS ADD NUM_REFERENCES SMALLINT;

PARTITION: # 0001 PAGE: # 00000001 PAGE: # 00000003
PAGE: # 00000000 SEGMENTED SPACEMAP PAGE: SYSTEM PAGE:
HEADER PAGE:

DSN1985I ZERO PAGES ENCOUNTERED. FIRST PAGE = 00000004, LAST PAGE = 00000005

PAGE: # 00000006

DATA PAGE:

ID-MAP FOLLOWS:

@1 0014 001A 0110 0116 0261 0267 O35E 0364
09 0Cel @D7D @565 @63F ©71A O7DA O7EQ OESS5
11 0962 0968 OA1D OACA OAD@ ©AD6 ©BB3

One thing to note here... In DB2 Version 8, this would not version the row.
But, with Reordered Row Format in DB2 Version 9, the addition of a fixed
length column to a row which has variable columns will cause versioning.

Once a page update (insert/update/delete) is performed, a system page is
added to the page set.

27

Mistakes were Made!

UPDATE DBA.WORDS

SET QUOTE_SOURCE =

'Jim Dee as quoted in a presentation to BMODUG’,
MEANING2 = 'Full of rows, as a relational database';

SUCCESSFUL UPDATE OF 470 ROW(S)

Oops... an unqualified UPDATE... impacted every row in our small database.

The DBA thought he would enter this quote source and a new meaning for Rowdy but
forgot the WHERE clause.

He considered just setting the columns to NULL without a WHERE clause. But some
words already entered had MEANING2.

So, he used his favorite log tool to generate updates to put things right.

However, all this expanding of rows and contracting them again put internal formats
in disarray (even though the unintentional changes are corrected) .

Gone fishing

*** BEGINNING OF PAGE NUMBER 00000006 ***

0000 0CO000O 000D 0VVVV60D O30COF46 OCS53170F 50000000 07050300 F6000001
0020 9996A881 93404040 40404040 40404040 40404040 40404040 40404040 404000C1
0040 40408002 FF000000 OOFFO000 0038006C 00880089 QO8AROC2 ©OD6E8640 96994097
0060 8599A381 89958995 8740A396 40814092 8995876B 4098A485 85956B40 96994096

OFCO OAD6OADO OACARAL1D 09689962 OE9S5Q7E@ ©7DAQ71A 063F0565 @D7DOC61 ©364035E
OFEQ 02670261 01160110 061 00000000 00000V 00V 32FB7764 2EEDQO42

500000000705 \

Gone
fishing. ..
on page 7!

Remember discussing the row header earlier... Well, if the correct bits are on,
instead of being a row header, it is now a POINTER record directing DB2 to
the new location of the actual data.

The INDEX stays the same pointing to page 6, but when the page is read, DB2
recognizes the pointer and will read the reference page to get the row.

But, you can see that pointers will cause additional I/O activity to retrieve data.

29

Gone fishing

PAGE: # 00000006

DATA PAGE: PGCOMB='GC'X PGBIGRBA='0000000032FB77642EED'X PGNUM='00000006°X
PGFLAGS="'00’X PGFREE=780 PGFREE='030C'X PGFREEP=3910
PGFREEP="@F46'X PGHOLE1='@C53’X PGMAXID='17'X PGNANCH=15

PGBIGTAIL: PGPRETAIL='00000000000000000000000032FB77642EED'X PGIDFREE="'00’X
PGEND="'42"X

ID-MAP—ROLLOWS:
01 (9014)001A 0110 0116 0261 0267 O35E 0364
09 OE&RPD7D 0565 @63F ©71A O7DA O7EQ OE9S

11 096%68 @A1D OACA OADO QAD6 ©BB3

RECORD: XOFFSET='0014'X PGSFLAGS='50'X PGSRIDOF="'00000}

Gone fishing...
Page 7
Row 5

Overflow
record

Q

Here’s the formatted version of page 6.

Rowdy is still the first row in the ID map. Its offset, x'14’ the overflow record bit
setin PGSFLAGS, and the PGSRIDOFfset has the new offset of page 7, row
5.

30

Where is Rowdy Now??

*** BEGINNING OF PAGE NUMBER 00000007 ***

0000 08000000 00V0VCCO 00RRO700 ©5A10D14 ©B740C0S 80005A00 00019796 97A49381
5 0 o rowdy

O1EQ 81948993 A8FFFFOO E2858540 9996A881 932100E6 00000199 96A684A8 40404040
0200 40404040 40404040 40404040 40404040 40404040 4000D540 40800100 20220930
0220 FFOO0000 38005600 7DOO7EQQ A300B200 C1409996 A4878840 81958440 8489A296
0240 99848599 93A84097 8599A296 9500C6A4 93934096 86409996 A6A26B40 81A24081
OFCo
OFEQ

00000000 000VVCRO 00OPPVVO OBBEO77F ©6BAG5DS5 ©50903DB
09180868 00000000 00VO0VRO 0OV 32FB7764 33840042

The pointer was to PAGE 7, ROWID 5. Using the 5" PGMAP offset we find
“rowdy”.

Where is Rowdy Now??

PAGE: # 00000007

DATA PAGE:

ID-MAP FOLLOWS:

01 0868 091B ©9F2 ©AD7 ©1F1 02D7 ©@3DB 0509
@9 ©5D5 06BA @77F @BS8E

RECORD: XOFFSET='Q1F1'X

9996A684 A8404040 40404040 40404040 40404040
40408001 00202209 30FF0000 00380056 ©O7DOO7E
40819584 408489A2 96998485 9993A840 978599A2
96A6A26B 4081A240 81409985 9381A389 96958193
88859985 40A681A2 40814099 96A684A8 40899540
A6844B00 96998987 899540A4 95929596 A69500D1
96A38584 40899540 81409799 85A28595 A381A389

40404040
©0A300B2
969500C6
408481A3
A3888540
899440C4
969540A3

40404040
00C14099
A4939340
818281A2
C9C4EA4C7
85854081
9640C2D4

404000D5
96A48788
96864099
85FFOOE3
40839996

And here it is again in formatted version

32

But Everyone Else Thinks
Rowdy’s Still in the Old Neighborhood

INSERT INTO DBA.WORDS (WORD, SP_TYPE, MEANING, ORIGIN_NOTES)
VALUES ('rowdy', 'N', 'A rough and disorderly person',
‘origin unknown');

DSNT408I SQLCODE = -803, ERROR: AN INSERTED OR UPDATED VALUE IS INVALID
BECAUSE INDEX IN INDEX SPACE WORDIND CONSTRAINS COLUMNS OF THE TABLE
SO NO TWO ROWS CAN CONTAIN DUPLICATE VALUES IN THOSE COLUMNS. F
EXISTING ROW IS X'0O000000601°

Index

I Foee 6

rowdy ---> page 6 RID 01

DB2 is smart about not allowing multiple pointers for a single row.

If a subsequent update would cause “rowdy” to overflow from page 6 to page
7...

DB2 deletes the page 6 reference, inserts the updated row into page 7, and
updates the home page POINTER to page 7 instead of page 6.

The insert and delete are logged with a bit indicating that they were caused by
an UPDATE statement.

If it can UNDERFLOW back to the home page, DB2 will do that as well.

Really smart!

33

Rowdy hopes REORG can
reunite him with Royal and Rover

REORG TABLESPACE DBAWORDS.UTSPBG
SHRLEVEL NONE
COPYDDN SYSCOPY

I like this..
I'11 get to see my
buddies again!
And they’re taking a
picture of me for
posterity!

In alphabetical order after the REORG based upon WORDINDX key sequence

rover
rowdy
royal

34

Rowdy, Rover, and Royal are together

The Index Page

©360 40404040 40404040 40404040 40404040 40404040 00000000080
24040 40404040 40404040 40404040
© 2404 40404040 40404

40404040 40404040 40404040 00LOLLLL
40404040 40404040 40404040 40404040
40794Q 40404040 40404040 40404040

/
KEY ENTRY: IPKMAP(XI)='@37A'X

KEY: 9996A585 99404040 40404040 40404040 40404040 40404040 40404040 4040
RID: ©0000000080A

KEY ENTRY: IPKMAP(XI)='@39E'X

rover

KEY: 9996A684 AB8404040 40404040 40404040 40404040 40404040 40404040 4040 rowdy
RID: ©0000000080B

KEY ENTRY: IPKMAP(XI)='@3C2'X

KEY: 9996A881 93404040 40404040 40404040 40404040 40404040 40404040 4040 royal
RID: ©0000000080C

If you did a REORG LOG YES, each PAGE FORMAT would appear in the db2
log as well.

35

Rowdy, Rover, and Royal are together

*** BEGINNING OF PAGE NUMBER ©0000008 ***
0000 000 00000800 06620970

0600 8595A381 A3899695 40A39640 C2D4D6C4 E4C70169

©06C0 9540A495 929596A6 9500D189 9440C485 :
©O6EQ@ 40979985 A28595A3 81A38996 9540A396 AFACTD 40000
0700 84A540490 584 ¢ 494000 D5ACEEEY

ccaE: 70100F6

404040 40404040

OFCO 00000000 00P0COP0 0P ©YIUTDTE Oo0oos! 561 04D40434
©37DB2AC 02060174 OPES0014 gDOOOCCE ©0PLLRe BBBbede 12

If you did a REORG LOG YES, each PAGE FORMAT would appear in the db2
log as well.

36

Not all available pages were used

*** BEGINNING OF PAGE NUMBER 00000007 ***
0000 00000000 00000 0VVRV700 OFDE0R14 00000100 0000V 00V 00RO

. LINES ARE ALL ZERO.
OFEQ 00000000 00000000 0VVCVVRO 0VVVVORO 0DOVPD 00V 32FC18DA 2D990142

Remember the FREEPAGE 1 option on the CREATE
TABLESPACE? It finally takes effect! So page 7 was
not used, and Rover, Rowdy, and Royal find
themselves on page 8.

Changes in the FREEPAGE and PCTFREE values will increase the amount of
free space on a freshly loaded or reorged tablespace to allow for growth in
clustering order.

37

More Changes to Rowdy’s Table

ALTER TABLE DBAWORDS
ALTER COLUMN MEANING SET DATA TYPE VARCHAR(250)
ALTER COLUMN MEANING2 SET DATA TYPE VARCHAR(250)
ALTER COLUMN MEANING3 SET DATA TYPE VARCHAR(250)
ALTER COLUMN NUM_REFERENCES SET DATA TYPE INTEGER,;

After some experience with the WORDS table, the DBA decides that the meaning
columns need to be longer.

At the same time, interest is so high that the number of references column must be
increased in size!

The ALTER VARCHAR does not cause versioning, but the change in the size
of the NUM_REFERENCES column does.

38

Ruff joins the crowd

INSERT INTO DBA.WORDS (WORD, SP_TYPE, MEANING,
MEANING2, MEANING3, ORIGIN NOTES, NUM REFERENCES)
VALUES ('ruff', 'N',

'and 17th centuries.',

'A distinctive, collar-like projection around the neck, as of
'feathers on a bird or of fur on a mammal.',

'Card Games. The playing of a trump card when one cannot '
'follow suit.',

'For senses one and two, short for ruffle (frill). For sense

'three, 0l1ld French roffle, earlier ronfle, probably from Italian

'ronfa, perhaps alteration of trionfa, "triumph," trump card,
'from Latin triumphus.',
33072) ;

'A stiffly starched, frilled or pleated circular collar of lace,
'muslin, or other fine fabric worn by men and women in the 16th

1

1

We insert RUFF after we did the versioning Alter.

39

But Ruff doesn’t look quite the same!

*** BEGINNING OF PAGE NUMBER ©0000008 ***

2000 1 0800 ©40ELGBC2 OOPOREL1 ©100D100 0015181 83924040
i ruff
0960 A381A389 969540A3 9640C2D4 D6EC4E4 03025200 ©B0259A4 86864040 40404040
0980 40404040 40404040 40404040 40404 40404040 00D54040 801CFFO© 00000
. LINES ARE ALL ZERO.
OFCe 000 ©970P8D3 ©7DDO6F7 ©6128561 ©4D40434
OFE© ©37D02AC 02060174 ©OOES0014 32FC3367 398E©052
030252000302 \

02 isn’tan ID in this case. What is it? ‘

This is an example of Versioning... an increase in size of a fixed length column
(in this case from two byte SMALLINT to a four byte INTEGER) introduced a
new version to map records.

The flag bit indicates that this is a versioned row and that what was originally
the ROWID byte instead indicates the VERSION of the row.

And just a reminder that the log record still contains the real ROWID allowing
for recovery and log utilities to function.

Actually, we could possibly gain more than just one page. When a space is
VERSIONED, additional SYSTEM PAGES are created to store older versions
of the DBD which contain the older version row formats to allow for later
normalization to the current VERSION.

Information in the Header Page (page 0) point to and contain information
about the SYSTEM pages.

40

The versioned data works!

SELECT WORD, MEANING, MEANING2, NUM_REFERENCES
FROM DBA.WORDS
WHERE WORD = 'rowdy' OR WORD = "ruff';

___ +
| WORD | MEANING | NUM_REFERENCES |
A +
s L | rowdy | A rough and disorderly person el |
2_| ruff | A stiffly starched, frilled or pleated...| 33072 |
+m—— e e +

41

Versioning works, but...

* Rendering older versions to the current version requires more
CPU

* Altering an indexed column forces REBUILD.
* Updating many rows in older version causes overflow.
* REORG as soon as possible.

The REORG will also remove the SYSTEM PAGES that are not necessary if
all rows are at the current VERSION.

But, the row headers will remain with the ‘version’ number in the ROWID byte
going forward.

42

Rowdy Gets Deleted

* Scraps of rowdy may still be in the database.
* Rowdy’s row will be on the log.
* Rowdy is still in old image copies.

Time for Rowdy to go away.

43

...0Or does he?

PAGE: # 00000008

DATA PAGE:

ID-MAP FOLLOWS:

01 0014 eOES5 0174 ©206 ©2AC ©37D 0434 e4D4
09 0561 612 86F7 ©7DD ©8D3 0970

PD-REC: XOFFSET='@6F7'X PGSFLAGS='@3'X PGSLTH=23@0 PGSLTH='@@E6'X PGSOBD='0000'X PGSBID='01’X

9996A684 AB404040 40404040 40404040 40404040 40404040 40404040 404000D5 rowdy -N
40408001 00202209 30FFO000 00380056 ©07DOO7E OOA300B2 ©0C14099 96A48788cnn.. '.=.t...A rough
40819584 408489A2 96998485 9993A840 978599A2 969500C6 A4939340 96864099 and disorderly person.Full of r
S6A6A26B 4081A240 81409985 9381A389 96958193 408481A3 818281A2 85FFOOE3 ows, as a relational database..T
88859985 40A681A2 40814099 96A684A8 40899540 A3888540 C9C4E4C7 40839996 here was a rowdy in the IDUG cro
A6844B0 969925/8} 9540A4 95929596 A69500D1 899440C4 85854081 A24098A4 wd..origin unknown.Jim Dee as qu
96A38584 4089954 .“ 09799 85A28595 A381A389 969540A3 9640C2D4 D6C4E4C7 oted in a presentation to BMODUG

3

As the table space is UTS and PGIDFREE is O, this is a
pseudo-delete and the row is not turned into a hole and
the PGMAP entry is not freed.

As you can see, the record is marked as Pseudo-Deleted,
and the page map entry is still there, with the broken bit
turned on.

44

0000 08000000 00OOOE 0000800

©6EOQ 40979985 A28595A3 81A38996
0700 84A84040 40404040 40404040
©720 01002022 0930FF00 00003800
0740 84408489 A2969984 859993A8
0760 6B4081A2 40814099 859381A3
e 8540A681 A2408140 9996A684
00969989 87899540 A4959295
@ 84408995 40814097 9985A285

Hey, I'm
still there

NES ARE ALL ZERO.
9000000 00000000 0o
7DB2AC 02060174 ©OES0014

9996A684A8
rowdy

Scraps of rowdy

*** BEGINNING OF PAGE NUMBER 00000008 ***

©4F40BC2

9540A396
40404040
56007Dee
40978599
89969581
A8408995
96A69500
95A381A3

00000000
00000000

©000BER3

40C2D4D6
40404040
7EGOA300
A2969500
93408481
40A38885
D1899440
89969540

©97008D3
00000000

©100D100

C4E4C703
40404040
B2@eC140
C6A49393
A3818281
40C9C4E4
C4858540
A39640C2

©7DD86F7
00000000

00019181

©OE60000
40404000
9996A487
40968640
A285FFee
C7408399
81A24098
D4DeC4E4

06120561
32FC3486

83924040

©19996A6
D5404080
88408195
9996A6A2
E3888599
96A68448B
A496A385
C70100F6

04D40434
1eD70e42

But the data will remain until the space is claimed by other DM activity
(INSERT, UPDATE) or REORG occurs to reclaim the space.

Old images of rowdy still exist on image copies prior to the delete as well as

after as long as the space is not reclaimed.

45

Logging Delete

Delete (contains row)

Index
updates

update
space
map

In addition to the physically logged delete of the row, there is index and space

map maintenance which occurs with a delete

46

LRH ©000016A
00000000

> 2F590ADA
I'm famous, they |, .. oeosccon

can’t get enough of 00000000
©OF6200B
40404040
00000038
84859993
99859381
409996A6
40A49592
979985A2

©05EQ009
32FC3486
3A2AA400
02000000

00090015
40404040
©056007D
A8409785
A3899695
84A84089
9596A695
8595A381

©32FC348610D7 TYPE(UNDO REDO)
LRSN(©@DC2F590ADA3A2AA400)
SUBTYPE(DELETE IN A DATA PAGE) CLR(NO)

©EABP000
BA6A5000
00000000
08000000

00000000
40404040
©07EGBA3
99A29695
81934084
9540A388
00D18994
A3899695

Final Performance - The Delete

URID(©000000032FC3486079D)

DBID(9855)

00000000
06000001
00000000
©00032FC

00000000
40404040
00B200C1
©0C6A493
81A38182
8540C9C4
40C48585
40A39640

00000000
00000000

3367398E

©100E600
40404040
409996A4
93409686
81A285FF
E4C74083
4081A240
C2D4D6C4

OBID(0082)
PROCNAME (DSNIDILS)

32FC3486
©00032FC

39408000

00019996
0eD54040
87884081
409996A6
©OE38885
9996A684
98A496A3
E4C7

PART (@e01)

©79De0eee
34860A6A

00010000

A684A840
80010020
95844084
A26B4081
998540A6
4B009699
85844089

PAGE (00000008)

00000000
©00000DC

00000000

40404040
220930FF
89A29699
A2408140
81A24081
89878995
95408140

Just like we looked at the DSN1LOGP print of the INSERT log record for
“rowdy” earlier in the presentation, the DELETE is also logged and could be
reversed using a log tool or manually deciphered if you are so inclined.

If this was an overflowed row, the home page pointer row delete would also be

logged.

How Could Rowdy’s Life be Different?

* Some we’ll talk about a little

ALTER-ing of COLUMN:Ss... either adding or increasing size
Row Versioning in DB2 V8.1 and above

Compression / Encryption?

Reordered Row Format in DB2 V9.1

LOB or XML COLUMNSs (V6.1 for LOBs, V9.1 for XML)
What if I'm an ASCIl or UNICODE table?

Extended RBA/LSRN in DB2 V11

* Others we won'’t

NON-PADDED INDEX
Compressed Index

48

Column changes

* When VARCHARs are expanded later or columns are added, rows grow and
may move off the original page and can actually take an extra read page to
get a single row. REORG or design changes can avoid this to some degree
(avoiding VARCHAR, avoiding adding columns later or REORG after adding
them).

* Versioning to increase column sizes has the same issues, plus conversion
overhead during retrieval.

* Certain ALTERs which did not Version a row in V8 will now induce Versioning
due to Reordered Row Format introduced in V9

* Example of Versioning discussed in the main flow of the presentation.

49

Change in space parameters

* FREEPAGE (and PCTFREE) are only honored on REORG and LOAD, so if you only
INSERT rows then the order of the inserts, not the clustering key, will determine the
order. But if you happen to insert in clustering order, REORG may actually cause
MORE pages to be involved in a query for a section of rows.

* The setting of the FREE parameters is dependent upon the DML activity expected for
each table...
* What is the nature of INSERTSs in relation to the clustering key

* Random INSERTs? Need higher FREEs
* Only increasing INSERTs with the space growing at the end? Lower FREEs

* Do you expect UPDATEs which will significantly change row sizes?
* DELETEs expected to create holes?

* Intelligent setting of FREEPAGE & PCTFREE reduce need to REORG

50

Compression

If Rowdy and his friends were compressed, then

* it would be harder to read the many images of the rows on logs, spaces and
copies (which might provide a small measure of data security... but the data
dictionary used for compression is contained within the same space or image
copy)

* the variable nature of the compressed results might cause more overflow

* more rows would probably fit on a page (reducing the number of pages read for
certain queries)

* For image copies destined for offsite transport
* DB2 has some native encryption capabilities
* Hardware and Software (hardware independent) solutions are available

There are many effects when a space is defined with compression. One is that the
data the rows leave on VSAM files and the logs is far less readable by you and me.
There are advantages of squeezing more rows on a page which allows, for example,
one letter of the alphabet into a buffer pool with fewer 1/0s. The data will also take
up less space on external media. Compressed rows are, by definition, variable even
if no VARCHARSs are defined. Compression only takes effect on REORG and LOAD
REPLACE. The space contains a dictionary created by these utilities. Once
compression is defined and REORG or LOAD REPLACE is executed, then inserted
and updated rows will be compressed using the dictionary.

Index keys are not in a compressed format prior to DB2 Version 9. Version 9 does
allow for index compression. It's much different than tablespace compression... it's
done at the page level instead of the row or index entry level.

Remember that pages are limited by PGMAXID to xX’FF’ or 255 rows per page... this
is regardless of the PAGESIZE - 4K, 8K, 16K, or 32K. If your 255 rows use less
space than the PAGESIZE, you have unused space in your database.

51

Compression

‘rowdy’ as a non compressed row:

0000 1004DDIC 51C9D100 00002100 000DOFCD OOl 0100C400 030198A7 83818140
i

aaie row _header wdy

04A0 40C2D4D6 C4E4CTFF 00000000 990VA684A840 40404040 40404040
04C0O 40404040 40404040 40404040 {0 Cl 87884081
04E0 95844084 89A29699 84859993 5 A4939340 96864099
0500 96A6A26B 4081A240 81409985 ¢ 818281A2 850001FF
0520 81D60020 07112700 2500E388 A684A840 899540A3
0540 888540C9 C4E4C740 839996A6 0 A4959295 96A69500
0560 2E00D189 9440C485 854081A2 4098A496 858440 89954081 40979985 A28595A3

next row begins here

0580 81A38996 9540A396 40C2D4D6 C4EA4CT700 300007D0 01010300 03019996 A8819340

OFCO 9640C2D4 D6C4EACT7 FF000000 00000000 00Q00000 00000000 00000F09 OE450D81
OFEO OCBDOBF9 0B350A71 09ADOSEY9 06970594 'J3E8 03240260 019C00D8 001400D5

N\

This was ‘rowdy’ on a Version 8 system after all of the test activity (DDL and
SQL) and ultimately a REORG. He was living on page x'21°/d’33’.

There were x’12’ or 18 rows on the page

With a Length of xX00E8’/d’232’

Version 01 (on a DB2 V8.1 system)

Character data is readable

Compression

‘rowdy’ as a compressed row:

0000 1004DD24 3253C900 00001500 00090E33

ot row—header &

ODEO C9B63A81 BC51B99D 4C0 000301AC 9CTA24C3 39920508 90A29D1

OEOO0 01C90700 9981F1AB D0810D€% 151C11E3 1137D7AA EC41B2CC 3FCBF930 04(
\ next row begins here

0E20 266A9B74 971C57D4 9CC76B82 38454B60 070D1000 00000000 00000000 ODDAODC6E

many more entries in the PGMAP
0E20 266A9B74 971C57D4 9CC76B82 38454B60 070D1000 00000000 00000000 ODDAODC6E

0OF60 O05CF05C4 05B905A7 05960582 044403ED 3E2 03D703CC 03C103B0O 039C0391
0F80 0386037B 03700361 034D0342 0337032C 0317309 02F102E6 02DB02D0 02C502B4
OFAO0 02A00295 028A027F 02740263 024F0244 0235&}3 021C020B 01F701EC 01E101Dé
OFCO 01CBO1B6 019E0193 0188017D 01720161 0149013E 01330128 01160105 OOF100E6
OFEO 00DBOODO 00C500BO 0098008D 00820077 006C005B 0047003C 00310026 001400D5

This is ‘rowdy’ after | did an ALTER TABLESPACE COMPRESS YES and
executed another REORG. Considering that the rows were already in the
same order, all this REORG should have done was compress the data.

‘rowdy’ moved from page x'21°/d’33’ to x'15°/d’21’ or is now 11 pages earlier in
the database.

And, the rows per page jumped from 18 to 225. So, you can see how this
could reduce I/O.. But, the cost is cycles somewhere to decompress.

X’E1’ or 225 rows on the page

Length of X004A’/d’74’ (158 bytes less than the non-compressed row)
Version 01 (on a DB2 V8.1 system)

Character and all data now mangled into 3 nibble dictionary index entries

53

Reordered Row Format

* BRF (Basic Row Format) only option prior to DB2 9.1

Columns appear in logical order (e.g. COL1, COL2, etc.)
Length attributes of VAR columns included with the column

* RRF (Reordered Row Format) introduced in Version 9.1 of DB2

All fixed columns appear in logical order at the beginning of the row
Followed by an array of offsets to the beginning of each VAR column (from
beginning of data)

All VAR columns appear in logical order after the offset array

Length attribute not included, it must be calculated via the difference between
its offset and the subsequent offset or the length of the row for the last column.

All newly created tables are in RRF

Migrated Spaces (Partitions) converted on first REORG or LOAD REPLACE (with
caveats)

The variable length attributes includes ‘1’ for a NULL byte if the column is nullable.
So a nullable VARCHAR(30) field which is the maximum length would actually have
a length attribute of 31 or X001F'... (whether as exists in BRF or calculated in RRF).

Numeric column types are encoded on DB2 pages to allow for correct sort ordering.
These must be decoded to z/OS format for usability if you are deciphering a row.

Date, Time, and Timestamp columns are also in a packed decimal type format
without a sign nibble. Again, that must be accounted for if directly processing a row.

The encoding methodology is discussed in various DB2 manuals.

54

Basic Row Format

* The column layout at the end of our test:

WORD CHAR(30) NOT NULL PRIMARY KEY

,SP_TYPE CHAR(3)

,MEANING VARCHAR (250)

,MEANING2 VARCHAR (250)

,MEANING3 VARCHAR (250)

, CODENUM SMALLINT GENERATED BY DEFAULT AS IDENTITY
CACHE 56, CYCLE

,QUOTE_DATE DATE

,QUOTE VARCHAR (500)

,ORIGIN_NOTES VARCHAR(250)
,QUOTE_SOURCE = VARCHAR(100)
»NUM_REFERENCES INTEGER

The fixed columns are in blue, bolded, and italicized above.

55

Basic Row Format

0000

04R0

04Co0

0500

0520

0540

0560

0580

0FCO
OFEOQ

1004DD1C 51C9D100 00002100 000DOFCD
row header

40C2D4D6 C4E4CTFF 00000000 0300EB00

40404040 40404040 40404040 4040404

04E0 ¢

CODENUM N QUOTE DT len N QUOTE

N QUOTE_SOURCE

9640C2D4 D6C4E4C7 FF000000 00000000
OCBDOBFY9 0B350A71 09ADOBES 06970594

00001201 0100c400
ro wdy
WORD

03019996 R684RA840

030198A7 83818140

40404040 40404040

N SP_TYP len N MEANING

len N MEANING2

N ORIGIN NOTES
00969989 87899540

NUM_REFS next row
300007D0 01010300

00000000 00000000
04ACO3E8 03240260

(MEANING3) len N

B4959295 96A695
begins here
03019996 A8819340

00000F09 0E450D81
019C00D8 001400DS

BASIC ROW FORMAT...

Logical column order. If you have a color copy, | alternated the color of the
column values.

N =NULLBYTE. X'00’not NULL, x’FF"is NULL.

The COLUMN NAME appears at the beginning of the column data after its
corresponding ‘N’'ULL byte.

(MEANING3) appears above and before it's physical location because it was

NULL and |

could barely fit it in.

56

Reordered Row Format

* How the columns look on the page:

WORD CHAR(30) NOT NULL PRIMARY KEY

,SP_TYPE CHAR(3)

, CODENUM SMALLINT GENERATED BY DEFAULT AS IDENTITY
CACHE 50,CYCLE

,QUOTE_DATE DATE

,NUM_REFERENCES INTEGER

,MEANING VARCHAR (250)

,MEANING2 VARCHAR (250)

,MEANING3 VARCHAR (250)

,QUOTE VARCHAR (500)

,ORIGIN_NOTES VARCHAR(250)
,QUOTE_SOURCE VARCHAR(100)

The fixed columns are in blue, bolded, and italicized above.

57

Reordered Row Format

0000 10007D2C 6E02FB0O0 00002400 000DOFCD 00001201 0100C400 030298A7 83818140

row header ro wdy
WORD
04A0 969540A3 9640C2D4 D6C4E4CT7 0300ES00 03029996 R684RA840 40404040 4040404
N SP TYP COD N QUOTE_DT N NUM_REFS
04C0 40404040 40404040 40404040 4040404 D& 80 7L
off off off off off off N MEANINGI1
04E0 C14099 96A48788 40819584 408489A2
N MEANING2
0500 9993A840 978599A2 9695

(MEANING3) N N QUOTE
0520 FF
N ORIGIN_NOTES

0540 00 96998987 899540A4
N QUOTE_SOURCE

0560 95929596 A695

next row begins here

0580 01010300 03029996 A8819340

OFCO 89969540 A39640C2 D4D6C4E4 C7000000 00000000 00000000 00000F09 OE450D81
OFEO OCBDOBF9 0B350A71 09ADOSES 06970594 04ACO3E8 03240260 019C00D8 001400D5

Reorderd Row Format... It's the same length.

All fixed columns appear first in their COLNO order.

Each ‘off’ relates to each VAR which follows in their COLNO order. The offset
is from the beginning of actual data, not from the row header.

VAR lengths are calculated by using the next offset... (next off — my off)

The last VAR column length is calculated by using the row header length as
the terminating point (row header — off).

Adds efficiency... If you want to SELECT QUOTE_SOURCE, DB2 can index
right to it by using the correct offset versus having to traverse the entire row.

58

LOB and XML Columns

* LOB and XML Column differences

* No longer just the base TABLESPACE (partitions)

* An additional space per LOB/XML column per part (LOB only) exists to hold
the column data

* Additional indexes for AUXILIARY parts too

* Additional column (ROWID for LOB, DOCID for XML) in base table to
reference

* Base table has a reference for each LOB/XML column used to index into
LOB/XML parts

Implicates more logging (even if LOG NO)

Implicates more 1/0 to fetch a single row

Utilities (e.g., COPY) need to consider all related spaces
High-level and Low-level space map pages

59

ASCIl or UNICODE

* All examples so far have been on an EBCDIC table

* What if DBAWORDS was defined as ASCII or UNICODE?

* Really, no physical difference... only character code points change

* Basic Latin character set for UNICODE same as ASCII

* Encoding scheme and CCSID used to store data would be different

* CHAR and VARCHAR data would be in the appropriate CCSIDs

* SORT sequence is different for EBCDIC than ASCII/UNICODE
* EBCDIC - Lower case, Upper case, Numeric
* UNICODE - Numeric, Upper case, Lower case

* Are you as familiar with ASCII code points as you are with EBCDIC? e.g:
siclal = x’'81% EBCDIC and x’61’ ASCIT
o ¢'N' = x"D5' EBCPIC and x’4E’' ASCII
sic’1 = x"F1.% EBEZDIC and x'31' ASCIIL
e c’'rowdy’ or x'9996A684A8" becomes x'726F776479'

60

Extended RBA/LRSN

The Data Page
Before Extended RBA/LSRN

*** BEGINNING OF PAGE NUMBER 00000002 ***

0000 1002930A 51D05800 00000200 OF7F007D 00000101 02006900 03¢
9 A0A0A040 40404040 1404040 404

0020 40404040 4040404 40 41 40 t 001

0040 878 24 9 8 00 00

0060 O01FF8001 FFO00000 OOOOO1FF O0OO0F0096 99898789 9540A495 929596A6 95

.... LINES ARE ALL ZERO.

OFEO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 :)D5

After Extended RBA/LSRN \

0000 10000000 00000000 00000200 OFeDO0O7D 00000101 02006900 0301D9D6 E6C4ES840

0020 40404040 40404040 40404040 40404040 40404040 4040 s 8001FF00
000 3 5 5300 5400C140 4 2D6D9C4
3E8 4 E2D6D5FF FFFF00DE 6 D5000000

. LINES ARE ALL ZERO.
OFEO 00000000 00000000 00000014 00000000 00000000 00000000 05569570 97970052

Prior to Extended RBA/LSRN
Shows ROWID 1 starting after the last 2 bytes of the page. xOFFC

After you go to DB2 V11 and perform a get your object using Extended RBA.
» Create after you are DB2 V11

* Load REPLACE after at DB2 V11

+ REORG after at DB2 V11

Shows ROWID 1 starting after the last 20 bytes of the page. xFEAO

You may also note that the data above is Basic Row format and below is
Reordered Row Format

61

"'Bye, Rowdy!

* We followed Rowdy
* Building his home (CREATE TABLESPACE/TABLE)
"*Y« His birth (INSERT INTO TABLE)
* Growing up (UPDATE)
Making friends (other INSERTS)
Changing circumstances (ALTER TABLE)
His sad departure (DELETE)
* His biography (LOG)

* We have seen how his life might have been
* Row formats
* Compression

* We learned a little about Db2 in the process (I hope)

62

% Please fill out your session evaluation!

63

