
Originally produced and presented by Linda Ball (retired BMC Software) and

subsequently modified by Ken McDonald, Jim Dee, Frank Rhodes and myself.

There are different ways to find them and different
surroundings. And most DBAs find they need to
understand these transformations thoroughly to manage
performance and recovery and even security.

In this presentation, we take a lighthearted view of one
row’s life to emphasize some of the internals of DB2 on
the z/OS platform.

1

2

3

4

First of all, we create the database, then we create the table space to house

the table and its data.

Db2 12’s default table space type is a Universal Table Space (or UTS), it’s

segmented, and can be partitioned by growth, or partitioned by range.

You can still create old fashioned, non UTS tablespaces, segmented or

partitioned, if you really, really want to, but you must issue the SET CURRENT

APPLICATION COMPATIBILITY statement first.

This presentation will use a UTS PBG tablespace.

Db2 stores data in page sets.

• If the page set contains data records, it is called a file
page set. A file page set is the physical (internal)
representation of a table space. A file page set that
contains LOB data is called a LOB page set.

• If it contains index entries, it is called an index page
set. An index page set is the physical representation of
an index space (index).

A page set is a collection of one or more data sets that
are logically concatenated to form a linear addressing
range.

Db2 data sets are defined as VSAM linear data sets
(LDSs).

5

Each segments contains the same number of pages

(in multiples of 4, from 4 to 64), are chained

together, and provide performance and locking

benefits.

The data sets in a page set contain pages that can be 4
KB, 8 KB, 16 KB, or 32 KB in size.

5

A page set for a table space that has undergone ALTERs
that resulted in changes to data type definitions also has
system pages.

In a segmented table space, system pages are in
dedicated system segments, with their own space map
pages.

LOB and XML page sets have other types of pages, which
we shan’t go into in this presentation.

6

Header pages

Header pages of page sets have a 1-byte page trailer for
6-byte RBA and LRSN formats, and a 20-byte page trailer
for 10-byte RBA and LRSN formats. The page header
fields contain control information that Db2 uses.

7

Space map pages

A space map page identifies the data pages that have
enough free space for more data to be inserted.

Each space map in a page set covers a specific range of
pages. The size of the range is computed based on the
type of page set (segmented file, non-segmented file,
partitioned file, LOB, or index), the page size, and
whether the page set has the MEMBER CLUSTER
attribute.

There are six corresponding space map page formats:
segmented, non-segmented, partitioned, LOB high-level,
LOB low level, and index.

Non-segmented and partitioned file page set space map

8

pages are almost identical.

8

File page set data pages

The file page set data page includes several parts.

Contents of a data page

The data page includes the following basic parts:

1. Data Page Header

2. Record

• Records (defined either by the user or by Db2, which
can be part of the user's data or part of the Db2 catalog
or directory)

• Overflow records and pointer records

• Large and small holes

9

3. Contiguous free space

4. ID map and page trailer.

Data page header

Every file page set data page has a 20-byte page header,
and appendage if an appendage is present, that contains
control information that Db2 uses.

Records

Records are stored following the data page header.

Records that are stored in pages represent the rows of a
table in a table space. The first 6 bytes of all records
contain control information.

This portion of the record is called the record header or
prefix. The header is followed by user data.

9

10

11

For this example, ‘rowdy’ is the first row inserted into this empty table. As

such, he will be the first row on page 6 (after header page 0 and spacemap

page 1).

12

For this example, ‘rowdy’ is the first row inserted into this empty table. As

such, he will be the first row on page 6 (after header page 0 and spacemap

page 1).

13

For this example, ‘rowdy’ is the first row inserted into this empty table. As

such, he will be the first row on page 6 (after header page 0 and spacemap

page 1).

14

For this example, ‘rowdy’ is the first row inserted into this empty table. As

such, he will be the first row on page 6 (after header page 0 and spacemap

page 1).

15

This is the WORDINDX index entry.

Index pages identify the rows by representing them in two-byte entries

beginning (for row 1, Rowdy’s ID) 20 bytes from the end of page (it used to be

two).

<click>

The index entry for Rowdy is at x’3E’.

<click>

Which is located here.

Rowdy’s data in this index (on WORD) includes his WORD value (rowdy or

X’9996A684A8’ followed by blanks) and the value used to locate his page and

hence his row data: X’00000601’, or Page 6, Row 1.

16

Data pages identify the rows by representing them in two-byte entries

beginning (for row 1, Rowdy’s ID) 20 bytes from the end of page (it used to be

two).

The offset where the data is located is in this entry.

The first x’14’ bytes of all tablespace pages is the page header.

The last byte of the page is the parity byte.

We’ll talk about the map entry at the end of the page in a bit more depth later.

<click>

But, ‘rowdy’ being ROWID 1 is at offset ’14’

The entire row is highlighted here… but, we’ll actually look at row layout a little

bit more towards the end of the presentation.

17

Here is the formatted version of the page. As you can see, the offset is x’14’.

<click>

The log RBA of the inserted row is here.

<click>

18

This is the INSERT log record for the tablespace data page. There are also

log records associated with the index updates as well.

There have been previous NA and EU IDUG presentations on deciphering the

log.

DSN1LOGP – It could save your job one day – covers syntax and examples of

using DSN1LOGP to find logged information.

BITs and Pieces of the DB2 Log – A geek level presentation using the

DSNMACS(DSNDQJ00) macro to map various log records and their content.

1. This is the RBA of the INSERT. This (or the LRSN in data sharing) is also

the PGLOGRBA of the page being updated. The PGLOGRBA reflects the last

activity (INSERT, UPDATE, DELETE, PAGE COMPACTION, etc.) against the

page.

The PGLOGRBA is used by copy and recovery utilities as well as the various

log tools.

This is the row header… 6 bytes which contain a byte of flags, a halfword

length, the halfword OBID, and the last byte is usually the ROWID. The

ROWID can be used to find the corresponding PGMAP entry at the bottom of

the page to locate the offset into the page where the row resides.

Now, row VERSIONING introduced in V8.1 could impact this and the last byte

could reflect the VERSION of the row instead of the ROWID. A bit in the flags

(first byte of the row header) indicate what this byte represents.

The first 8 bytes prior to the row header here is the DM Segment Header…

byte 0003 is also (and so far always) the ROWID. This is used by the

recovery and log tools to find the PGMAP entry.

18

19

These are all the records from the log of the operations
performed on the WORDS database and UTSPBG tablespace.

Here, the tablespace, the table and the indexes are being
created, and their pages formatted.

20

Here, the table’s pages are being formatted: the header page,
the space map page, the root page.

The segment is allocated and the space map page is updated.

Finally, page 6 is allocated, the space map page is updated,
the row is inserted and the index updated.

21

After many more INSERTs, the page fills up.

22

Look at the space map page now! See how it has grown!

The number of rows in the ID-MAP matches the PGMAXID value of x’17’ or

decimal 23.

23

The PGMAXID is underlined at offset x’12’ in the ‘Header’ portion of the page.

This page contains potentially x’17’ or 23 rows. (There could be holes due to

overflows or deletes.)

This byte is the architectural limit as to why the maximum number of rows on a

single page is 255.

Here’s Rowdy.

Here’s Royal.

Here’s Boondoggle.

The PGMAP is at the bottom of the page. Each halfword entry is the offset to

that ROWID.

24

An update to ‘rowdy’… this will increase his length and move him to a different

location on the page but will not yet cause an overflow.

25

Note that ROWID 01’s location changed from 0014 to 0EF3. Even more

interesting that the page was squeezed to consolidate free space to allow for

this row to fit into its ‘home’ page. Note that ROWID 02 is now at location

0014. This indicates that there is no implied order to the ROWs on a given

page… row 1 does not have to be the first row… the PGMAP allows us to find

the correct offset for the corresponding rows.

PAGE COMPACTION log records were introduced via into Versions 7 and 8 of

DB2 via APAR PK19182. These records reflect the fact that a squeeze

occurred.

26

Rowdy’s original row data is still in its original position in the page – offset

x’14’, but as the row pointer has changed to x’0F02’, this old data is

inaccessible.

27

One thing to note here… In DB2 Version 8, this would not version the row.

But, with Reordered Row Format in DB2 Version 9, the addition of a fixed

length column to a row which has variable columns will cause versioning.

Once a page update (insert/update/delete) is performed, a system page is

added to the page set.

28

Oops… an unqualified UPDATE… impacted every row in our small database.

The DBA thought he would enter this quote source and a new meaning for Rowdy but

forgot the WHERE clause.

He considered just setting the columns to NULL without a WHERE clause. But some

words already entered had MEANING2.

So, he used his favorite log tool to generate updates to put things right.

However, all this expanding of rows and contracting them again put internal formats

in disarray (even though the unintentional changes are corrected) .

29

Remember discussing the row header earlier… Well, if the correct bits are on,

instead of being a row header, it is now a POINTER record directing DB2 to

the new location of the actual data.

The INDEX stays the same pointing to page 6, but when the page is read, DB2

recognizes the pointer and will read the reference page to get the row.

But, you can see that pointers will cause additional I/O activity to retrieve data.

30

Here’s the formatted version of page 6.

Rowdy is still the first row in the ID map. Its offset, x’14’ the overflow record bit

set in PGSFLAGS, and the PGSRIDOFfset has the new offset of page 7, row

5.

31

The pointer was to PAGE 7, ROWID 5. Using the 5th PGMAP offset we find

“rowdy”.

32

And here it is again in formatted version

33

DB2 is smart about not allowing multiple pointers for a single row.

If a subsequent update would cause “rowdy” to overflow from page 6 to page

7…

DB2 deletes the page 6 reference, inserts the updated row into page 7, and

updates the home page POINTER to page 7 instead of page 6.

The insert and delete are logged with a bit indicating that they were caused by

an UPDATE statement.

If it can UNDERFLOW back to the home page, DB2 will do that as well.

Really smart!

34

In alphabetical order after the REORG based upon WORDINDX key sequence

…

rover

rowdy

royal

…

35

If you did a REORG LOG YES, each PAGE FORMAT would appear in the db2

log as well.

36

If you did a REORG LOG YES, each PAGE FORMAT would appear in the db2

log as well.

37

Changes in the FREEPAGE and PCTFREE values will increase the amount of

free space on a freshly loaded or reorged tablespace to allow for growth in

clustering order.

38

After some experience with the WORDS table, the DBA decides that the meaning

columns need to be longer.

At the same time, interest is so high that the number of references column must be

increased in size!

The ALTER VARCHAR does not cause versioning, but the change in the size

of the NUM_REFERENCES column does.

39

We insert RUFF after we did the versioning Alter.

40

This is an example of Versioning… an increase in size of a fixed length column

(in this case from two byte SMALLINT to a four byte INTEGER) introduced a

new version to map records.

The flag bit indicates that this is a versioned row and that what was originally

the ROWID byte instead indicates the VERSION of the row.

And just a reminder that the log record still contains the real ROWID allowing

for recovery and log utilities to function.

Actually, we could possibly gain more than just one page. When a space is

VERSIONED, additional SYSTEM PAGES are created to store older versions

of the DBD which contain the older version row formats to allow for later

normalization to the current VERSION.

Information in the Header Page (page 0) point to and contain information

about the SYSTEM pages.

41

42

The REORG will also remove the SYSTEM PAGES that are not necessary if

all rows are at the current VERSION.

But, the row headers will remain with the ‘version’ number in the ROWID byte

going forward.

43

Time for Rowdy to go away.

44

As the table space is UTS and PGIDFREE is 0, this is a
pseudo-delete and the row is not turned into a hole and
the PGMAP entry is not freed.

As you can see, the record is marked as Pseudo-Deleted,
and the page map entry is still there, with the broken bit
turned on.

45

But the data will remain until the space is claimed by other DM activity

(INSERT, UPDATE) or REORG occurs to reclaim the space.

Old images of rowdy still exist on image copies prior to the delete as well as

after as long as the space is not reclaimed.

46

In addition to the physically logged delete of the row, there is index and space

map maintenance which occurs with a delete

47

Just like we looked at the DSN1LOGP print of the INSERT log record for

“rowdy” earlier in the presentation, the DELETE is also logged and could be

reversed using a log tool or manually deciphered if you are so inclined.

If this was an overflowed row, the home page pointer row delete would also be

logged.

48

49

50

51

There are many effects when a space is defined with compression. One is that the

data the rows leave on VSAM files and the logs is far less readable by you and me.

There are advantages of squeezing more rows on a page which allows, for example,

one letter of the alphabet into a buffer pool with fewer I/Os. The data will also take

up less space on external media. Compressed rows are, by definition, variable even

if no VARCHARs are defined. Compression only takes effect on REORG and LOAD

REPLACE. The space contains a dictionary created by these utilities. Once

compression is defined and REORG or LOAD REPLACE is executed, then inserted

and updated rows will be compressed using the dictionary.

Index keys are not in a compressed format prior to DB2 Version 9. Version 9 does

allow for index compression. It’s much different than tablespace compression… it’s

done at the page level instead of the row or index entry level.

Remember that pages are limited by PGMAXID to x’FF’ or 255 rows per page… this

is regardless of the PAGESIZE – 4K, 8K, 16K, or 32K. If your 255 rows use less

space than the PAGESIZE, you have unused space in your database.

52

This was ‘rowdy’ on a Version 8 system after all of the test activity (DDL and

SQL) and ultimately a REORG. He was living on page x’21’/d’33’.

There were x’12’ or 18 rows on the page

With a Length of x’00E8’/d’232’

Version 01 (on a DB2 V8.1 system)

Character data is readable

53

This is ‘rowdy’ after I did an ALTER TABLESPACE COMPRESS YES and

executed another REORG. Considering that the rows were already in the

same order, all this REORG should have done was compress the data.

‘rowdy’ moved from page x’21’/d’33’ to x’15’/d’21’ or is now 11 pages earlier in

the database.

And, the rows per page jumped from 18 to 225. So, you can see how this

could reduce I/O.. But, the cost is cycles somewhere to decompress.

X’E1’ or 225 rows on the page

Length of x’004A’/d’74’ (158 bytes less than the non-compressed row)

Version 01 (on a DB2 V8.1 system)

Character and all data now mangled into 3 nibble dictionary index entries

54

The variable length attributes includes ‘1’ for a NULL byte if the column is nullable.

So a nullable VARCHAR(30) field which is the maximum length would actually have

a length attribute of 31 or x’001F’… (whether as exists in BRF or calculated in RRF).

Numeric column types are encoded on DB2 pages to allow for correct sort ordering.

These must be decoded to z/OS format for usability if you are deciphering a row.

Date, Time, and Timestamp columns are also in a packed decimal type format

without a sign nibble. Again, that must be accounted for if directly processing a row.

The encoding methodology is discussed in various DB2 manuals.

55

The fixed columns are in blue, bolded, and italicized above.

56

BASIC ROW FORMAT…

Logical column order. If you have a color copy, I alternated the color of the

column values.

N = NULL BYTE. X’00’ not NULL, x’FF’ is NULL.

The COLUMN NAME appears at the beginning of the column data after its

corresponding ‘N’ULL byte.

(MEANING3) appears above and before it’s physical location because it was

NULL and I could barely fit it in.

57

The fixed columns are in blue, bolded, and italicized above.

58

Reorderd Row Format… It’s the same length.

All fixed columns appear first in their COLNO order.

Each ‘off’ relates to each VAR which follows in their COLNO order. The offset

is from the beginning of actual data, not from the row header.

VAR lengths are calculated by using the next offset… (next off – my off)

The last VAR column length is calculated by using the row header length as

the terminating point (row header – off).

Adds efficiency… If you want to SELECT QUOTE_SOURCE, DB2 can index

right to it by using the correct offset versus having to traverse the entire row.

59

60

61

Prior to Extended RBA/LSRN

Shows ROWID 1 starting after the last 2 bytes of the page. x0FFC

After you go to DB2 V11 and perform a get your object using Extended RBA.

• Create after you are DB2 V11

• Load REPLACE after at DB2 V11

• REORG after at DB2 V11

Shows ROWID 1 starting after the last 20 bytes of the page. xFEA0

You may also note that the data above is Basic Row format and below is

Reordered Row Format

62

63

